If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+10p=35
We move all terms to the left:
p^2+10p-(35)=0
a = 1; b = 10; c = -35;
Δ = b2-4ac
Δ = 102-4·1·(-35)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{15}}{2*1}=\frac{-10-4\sqrt{15}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{15}}{2*1}=\frac{-10+4\sqrt{15}}{2} $
| 4x=11=6x-7 | | 2m+-2=8 | | 40+40+40+40+2x=300 | | 4r=12r+48 | | 8x4-4=13x+6 | | -5g-23=14g-194 | | 3.5x+5x=15 | | 2t+9/5=4 | | r/7-7=2 | | -3=-3f+-9 | | 8u+36=12u | | 8x+30=4x+2x+30 | | k2–16k–17=0 | | 3*x*6=33 | | |2w+3|=11 | | 6(b-9)=9b-45 | | 2p-9=-7p-9 | | (y+3)(y-7)=0 | | 13+7x=9-22x | | 6y-4=15y+68 | | 0.3x+6.9=-2x | | 4.9x-12.09=3.1 | | l+2=-18 | | 3=k/5 | | v/2=13 | | 15=m-16 | | 2.5(.20+x)=2.5-x | | 5j−6=6j | | 2x(x-8)=24x^2 | | 11-3x=75+-1 | | -4(5y+6)=16 | | x+2x.50°=1X+2x=503x=50/3X=16.7 |